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Quasibosons
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The similarity of the commutation relations for bosons and quasibosons (fermion pairs)
suggests the possibility that all integral spin particles presently considered to be bosons
could be quasibosons. The boson commutation relations for integral spin particles could
be just an approximation to the quasiboson commutation relations that contain an extra
term. Although the commutation relations for quasibosons are slightly more complex,
itis a simpler picture of matter in that only fermions and composite particles formed of
fermions exist. Mesons are usually referred to as bosons, but they must be quasibosons
since their internal structure is fermion (quark) pairs. The photon is usually considered
to be an elementary boson, but as shown here, existing experiments do not rule out
the possibility that it is also a quasiboson. We consider how the quasiboson, composite
nature of such a photon might manifest itself.

KEY WORDS: quasibosons; composite photon; commutation relations; symmetry
under interchange.

1. INTRODUCTION

Mostintegral spin particles (light mesons, strange mesons, etc.) are composite
particles formed of quarks. Because of their underlying fermion structure, these
integral spin particles are not fundamental bosons, but composite quasibosons.
However, in the asymptotic limit, which generally applies, they are essentially
bosons. For these particles, Bose commutation relations are just an approximation,
albeitavery good one. There are some differences; bringing two of these composite
particles close together will force their identical fermions to jump to excited states
because of the Pauli exclusion principle.

Afewintegral spin particles (photons, gluons, weak bosons, and gravitons) are
regarded as elementary, exact bosons. For all of these particles, except the photon,
there is no direct evidence from their statistics to differentiate between boson
and quasiboson behavior. As we shall show in this paper, surprisingly, present
experiments do not differentiate between a “boson photon” and a “quasiboson
photon.” If the photon were a quasiboson, it would presumable be composed of
neutrinos or massless quarks.
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Since the predictions of quantum electrodynamics are in such excellent agree-
ment with experiment (e.g., the calculated anomalous magnetic moment of the
electron agrees to a few parts per billion with experiment), one might think there is
little or no room for improvement in the model of the photon. In addition, since
the photon is known to be massless to high precision, how can it be a composite
particle? Would not a composite photon have readily detectable self-interactions?
Does not the association of the photon with local gauge invariance indicate that it
is elementary?

In spite of all its successes, there are some problems with the present
photon model: Many of the calculations diverge (e.g., the calculated anoma-
lous magnetic moment of the electron really gives infinity, before renormaliza-
tion) and nonphysical photon polarization states must be introduced to satisfy
Lorentz invariance. Some of these problems are discussed in a recent paper con-
cerning composite photons (Perkins, 2000). A method of binding a fermion—
antifermion pair with a zero range interaction that does not involve quanta is
also discussed (Perkins, 2000). With such an interaction the composite patrticle
need not have mass or self-interactions. It is further shown (Perkins, 2000) that
a composite-photon theory can be Lorentz invariant without the need for gauge
invariance.

Let us compare the commutation relations for fermions, bosons, and qua-
sibosons. Fermions are defined as the particles whose creation and annihilation
operators obey the anticommutation relations,

{a(k), a(l)} =0,
{a(k), a’()y =0, 1
fak), a’()} = sk — 1),
while bosons are defined as the patrticles that obey the commutation relations,
[b(k), b(h)] =0,
[bf(k), bT()] = O, )
[b(k), bT(1)] = 8(k —1).

In superconductivity (Blatt, 1964), the Cooper pairs are referred to as “qua-
sibosons,” since they obey commutation relations similar to, but different from,
those of bosons. It is well known that molecules with an even number of fermions
exhibit Bose behavior, while those with an odd number exhibit Fermi behavior
(Ehrenfest and Oppenheimer, 1931). Theoretically, these composite molecules
formed of an even number of fermions (as well as nuclei formed of an even num-
ber of fermions) do not obey Bose commutation relations and so we will refer to
them as quasibosons.
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The creation and annihilation operators of quasibosons (composite particles
formed of fermion pairs) obey the commutation relations of the form

[Q(k), QU] =0,
[Q(K), Q" =0, ®)
[QK), Q'] = 8(k —1) — Ak, I).

The commutation relations for a pair of fermions, Eqg. (3), are similar to those
forbosons, Eq. (2). Tha(k, 1) term (see Eq. (9)) looks complicated but its value is
usually very small. Thus, itis easy to envisage that Eq. (2) is just an approximation
to Eq. (3), the more accurate commutation relations for integral spin particles.

As presented in many quantum mechanics texts it may appear that Bose
statistics follow from basic principles, but it is really from the classical canonical
formalism. This is not a reliable procedure as evidenced by the fact that it gives
the completely wrong result for spi%particles. Furthermore, in extending the
classical canonical formalism for the photon, it is necessary to deviate from the
canonical rules (see Bjorken and Drell, 1965, pp. 71, 98).

Based on the symmetry of systems of identical particles, it can be shown that
their wavefunctions must be symmetric or antisymmetric under interchange (see
Bjorken and Drell, 1965, pp. 32—34). Although identical bosons are symmetric
under interchange, so are identical quasibosons. It has also been claimed that
the spin-statistics theorem requires that integral spin particles must be bosons.
In Section 5, the spin-statistics theorem is reviewed and shown not to apply to
quasibosons which do not satisfy space-like commutativity because of their finite
extent.

In Section 6, the experimental evidence concerning the photon is examined.
We conclude that present experiments do not rule out the possibility that photons
are quasibosons. Although the state of two elementary neutral bosons (which
are their own antiparticle and are identical) must be symmetric under exchange,
two composite quasibosons (which are not identical) can be antisymmetric or
symmetric under interchange. The author has suggested (Perkins, 1999) that there
exist two distinctz% as a solution to thep — 7°7° puzzle. As discussed in
Section 3, composite photons can be nonidentical also, making possible axial
vector meson decays into two photons (see Section 6.2).

2. STATISTICS OF QUASIBOSONS

Consider quasibosons formed of two different types of fermions of equal mass
whose annihilation operators are given the symbalsdnd “c.” Quasibosons,
formed from pairs of spir%— particles, have spin 0 or 1. Assuming that the system
isin alarge box of finite volume with periodic boundary conditions, the quasiboson
annihilation and creation operators are defined as (Landau, 1996; Lipkin, 1973;
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Perkins, 1972; Sahlin and Schwartz, 1965)
Q(p) = Y Fi(k)c(p/2 — k)a(p/2 + k),

k

4)
Q'(p) = Y F(k)a'(p/2 + k)ci(p/2 - k),
k

wherea(k) andc(k) are annihilation operators for two different types of fermions.
The Fourier transform of the creation operator is

QR = [ dr s)wlR - 1/2W{R +1/2), ©)
whereg(r) describes the relative motion and can be expanded in plane waves,
¢(r) =) F(e'. (6)
k
The relative and center-of-mass coordinates and momenta are defined by
r=ry—rp, R= %
ke — Ky 7
k= 5 P= ki + ko,
with
Xk: IF(K)I>=1. @)

The quasiboson operators of Eq. (4) have been shown (Landau, 1996; Lipkin,
1973; Perkins, 1972; Sahlin and Schwartz, 1965) to obey the commutation relations
(3) with

A@p',p) =Y FIKIF(p'/2—p/2+K)al(p — p’'/2 — k)a(p'/2 — k)
k

+ F(p/2—p'/2+K)cI (p — p'/2+ k)e(p' /2 + K)]. )

For Cooper electron pairs (Landau, 199%)andc represent different spin
directions. For nucleon pairs (the deuteron) (Landau, 1996; Lipkin, 187&)d
c represent proton and neutron. For neutrino—antineutrino pairs (Perkins, 1972),
a andc represent neutrino and antineutrino. The size of the deviations from pure
Bose behaviorA(p’, p), depends on the degree of overlap of the fermion wave
functions and the constraints of the Pauli principle.

If we assume the state has the form

@) = al(ki)al(kz) - - - &' (kn)c'(q1)c™(A2) - - - ¢ (Am)(0) (10)



Quasibosons 827

then the expectation value of (9) vanishesgdbg p, and we can approximate the
expression foA(p’, p) by

AP, p) =8(p" —p) Y _ IF(K)P[al(p/2 - k)a(p/2 — k)
k

+ cf(p/2 + k)c(p/2 + k)] (11)
Using the fermion number operatarg(k) andn¢(k), this can be written as
A@',p) =8’ —p) Y IFK)I[Na(p/2 — k) + ne(p/2 + k)]
k

=8(p" — p) Y_[IF(p/2 — K)I’na(k) + IF (k — p/2)/°nc(k)]
k

=5(p" — P)A(p, p) (12)

showing that it is the average number of fermions in a particular ktateraged
over all states with weighting factofs(p/2 — k) andF(k — p/2).
The number operator for quasibosons is defined as

N(p) = Q"(P)Q(p)- (13)

Using (3), (9), and (13), we obtain the following commutation relations for the
number operator:

[N(P'), Q(P)] = —{8(p" — p) — AP, P)IQ(P"),

[NE), QT(P)] = QT(p")8(p" —p) — AP, P},

[N(E), N(P] = Q'(PAP, P)Q(P) — QTP AP, P)Q(P).
([N(p"), N(p)]) = O.

As expected, these commutation relations differ from the usual Bose relations
by terms involvingA(p’, p). Note thatA(p’, p) does not commute with the quasi-
boson annihilation and creation operators. Using the second equation of (12), we
obtain

(14)

[A(, p), QT(@)] = Y _{IF(p/2— k)P [na(k), Q'(a)]
k

+ |F(k — p/2)? [ne(k), Q' (@)}- (15)

Inserting (4) forQf(q) and using the usual commutation relations for the fermion
number operator (see Landau, 1996, p. 456) gives

[A(p. p). QT(@)] = D {IF(p/2—a/2—K)I>+ [F(a/2 — p/2 - k)I?}
k

x F(k)af(q/2 + k)c(q/2 — k). (16)



828 Perkins

At this point we need an approximation to obtain a workable value. Lipkin
(1973) suggested for a rough estimate to assumeRfigtis a constant for the
states used to construct the wave packet. He used the syrfoothe number of
states used to construct the wave packet. In that case, Eq. (8) B8 = 1/,
and one obtains directly from (16),

[A(p, p), QT (A)] = 2Q7(9)/ 2(p, 1). 17)

In Lipkin's approximation{2 does not depend upg@andg. An improvement
can be made by using

1 2 FIIF(P/2—a/2—K)? + |F(a/2—p/2— k)P
Q(p, q) 2%k F) ’

and letting F(k) be a Gaussian distribution, which satisfies the normalization
condition (8)

(18)

(8m)%* o koK
T

whereV is the confinement volume. Going from a box to the infinite domain,
Eq. (18) becomes

Fk) = (19)

1 [dkFK)IF(p/2—q/2- k)]

= 20
20, ) 0 0
Inserting the Gaussian distribution fB(k) and evaluating the integrals results in
3\2 (ko \® 2 ex2
Q Y V(=2 (p—0)*/(6k5) 21
p.o-(5) V(i) 1)

We can see from (18) thay L(p, g) will be very small if F (k) andF(p/2 —
g/2 — k) have little overlap. This can occurdf= —p (two quasibosons emitted
in opposite directions) angb| > ko, the Gaussian width or momentum spread.
This overlap factor is given explicitly in the exponential of (21). For the case in
whichqg = p, 2(p, q) does not depend upgn so we can just use.

We can now use the second equation of (14) and (17) to find the effect of the
guasiboson number operator acting on a stata gfiasibosons

m(m — 1)
Q(p, p)

where we have useld (p)|0) = E(p, p)|0) = 0. This result differs from the usual
one because of the second term which is small for |&g&ormalizing in the

NE)Q!E)™0) = (m - ) Q' E)™0), (22)



Quasibosons 829

usual manner (see Koltun and Eisenberg, 1988, p. 7),

Qi (p)Iny) = \/(np +1) (1 - %)m;n +1),

Q(p)Ing) = \/np (1_ (npg; 1)>|np -1,

where|n,) is the state ofy, quasibosons having momentyrmvhich is created by
applying Q' (p) on the vacuunm, times. Note that

Q' (p)I0) = |1p),
Q(p)I1p) = 10),

which is the same result as obtained with boson (or fermion) operators. In Eq. (23)
we see formulas similar to the usual ones with correction factors that approach
zero for large.

Now, let us look at possible commutation relations for a spin-1 quasiboson
photon. The quasiboson annihilation and creation operators need to be modified
slightly to handle spin and a mass zero composite particle. We consider photons
to be composed of two-component neutrinos and their antiparticle (momenta an-
tiparallel and spins parallel). The neutrino and antineutrino are assumed to have
antiparallel momentum when created and absorbed in interactions with other par-
ticles. The photon is continuously creating virtual pairs that annihilate. (Whether
this is the correct composition for a real photon is not of concern here. Our main
interest is to have a model of a quasiboson photon for comparison purposes.) Let
yr(p) andy, (p) be annihilation operators for right and left circularly polarized
photons. Then,

(23)

(24)

ye(®) = = 37 F (K, mea(k, —n)as(p + k, n) + ca(p + k, mas(k, —n),
N2

n(p) = 1 > " Fi(k, m[ca(k, —n)ag(p + k, n) + c1(p + k, may(k, —n)],
\/i k
(25)

wheren = p/|p| = k/|k| anda corresponds to the neutrino andthe antineu-
trino while the subscripts refer to different two-component neutrinos. Another
complexity, multiple two-fermion states, has also been introduced in Eq. (25).
With the same approximation as used in Eq. (11), the commutation relations for
yr(p) andy, (p) become

[yr(P"), yr(P)] = O,
("), m(P)] =0,
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[vR(P"), v (P)] = 8(p" — P)(L — Asa(p, P)),
I (®). 7 ()] = 80" — P)(L — Aza(p. P)),
[vr(P"), 1.(P)] = O,
[vr(®). 7' (P)] = O,

(26)

where
1

A1ap, p) = 5

Y IF (K, n)[al(p+ k, may(p + k, n) + ¢l (k, —n)cu(k, —n)
k

+ ch(p + K, n)ca(p + k, n) + al (k, —may(k, —n)]. 27)

We now consider whether dissimilar quasibosons commute or anticommute.
In general, two unlike quasibosons will commute as pairs of nonidentical fermions
commute. However, if two dissimilar quasibosons contain the same fermion(s),
then they will commute with commutation relations similar to Eq. (3) with the
A(Kk, I) term modified by some appropriate factor.

3. SYMMETRY OF QUASIBOSONS UNDER INTERCHANGE

First we consider a state of two identical quasibosons. Assuming that the
system is in a large box of finite volume with periodic boundary conditions, a state
of two quasibosons in the formalism of Eq. (4) is represented by

1Q1Q2) = Y f(P1, P2)Q'(P1) Q1 (p2)10). (28)

P1,p2

Since the quasiboson creation operators commute, the state of two quasibosons as
given by Eq. (28) is symmetric under interchange of the quasibosons.

While the state of two identical bosons must be symmetric under interchange,
a state of nonidentical bosons (or quasibosons) can be either symmetric or anti-
symmetric. For example, a state of two identigds must be a state with even
relative orbital angular momentum, while a staterdfr ~ can have even or odd
relative orbital angular momentum.

We will consider the symmetry of a state of two quasiboson photons. Lin-
early polarized photon annihilation operators can be constructed from circularly
polarized operators by

L
V2

n(p) = é[n(p) — ()]

E(P) = —=[r.(P) + vr(P)I,

(29)
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Using Eq. (25) we obtain

£(p) = % Xk: FT(k, mlcu(k, —nas(p +k, n) + ca(p + k, n)az(k, —n)

+ CZ(kv _n)aZ(p + k, n) + Cl(p + k! n)a-l(k! —n)],

1) = 5 37 F ik miestk, —mau(p+ k. 1)+ a(p + k mat, )

— Ca(k, —n)az(p + k, n) — c1(p + k, m)ay(k, —n)]. (30)
From Eg. (30) we see that a state of two composite photons such as
@) = > f(p1, P2)ET(P2)n'(2)[0) (31)

P1,P2
need not be symmetric under interchange as the two photons are not identical.

4. COMMUTATION RELATIONS FOR QUASIBOSON FIELDS
Consider the field

¢(x) = AKX) + A (x), (32)

where
1 1
AK) = / ¢
W= | TP /2w
with px = p-Xx — poXo. We will follow the usual argument, which shows that
Bose fields are local (e.g., see Veltman, 1994, p. 25), except that Eq. (33) has a

guasiboson operat@(p) instead of a Bose operator. Using Egs. (3) and (12) for
the quasiboson commutation relations gives

Q(p) €™, (33)

1 1 ip(x— N
[A(X), AT(Y)] = 2y fd3p ﬁep( ML - Ap, p)]- (34)
Since
[AT(x), A(Y)] = —[A(y), AT(x)], (35)
Egs. (32) and (34) resultin
[(x). ()] = (;)3 / d’p %{e‘"‘*‘y’ —e "I - AP, P (36)

which can be expressed as
i

(909, 6] =1D(x~Y) = 553

/ dspé sinp(x — YIA(. p).  (37)
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For equal timesD(x —y, 0) is zero, but because of the second term this
commutator doesotvanish for space-like intervals (- y)? < 0. This means that
guasibosons, being composite particles, have a finite extent in space. Quasiboson
fields cannot have a commutator which vanishes everywhere outside the light cone.
Otherwise, one could prove using the spin-statistics theorem that quasibosons are
bosons, a contradiction.

This field satisfies the Klein—-Gordon equation and therefore might be ap-
propriate for a spin-0 composite particle. The nonlocal field effect carries over to
guasibosons with spin, of course.

The commutation relations for the electromagnetic fields of quasibosons in
terms ofAlg(p p) andA21(p p) of Eq. (27) are (see Appendix A of Perkins, 1965)

0 9 a 0 .
1500, £ = (81550 30— 320 ) {iD6c=v) - 75 [ o
<UD — YN0 ) + 8.9} g > e
k=1

« 2 [ oyt cosp(x — Y)I(A1a(p. p) — Aaa(p, ).

0 X
(39)
[H (9., Hi ()] = [E: (), E; ()] (39)
and

I S a . i 1

(B0 MO = 0 e (D69 — s [P

< sinlp(x — YNBaclp.p) + B2, P} ~ e

. (5” aiXO aayo _ a—xa) [ ¢ pe* cosipix )

x (A12(p, P) — Aza(p, P))- (40)

These quasiboson commutation relations differ from the usual photon com-
mutation relations because of the extra terms invohing(p, p) and Az1(p, p).
To estimate the deviation from local commutativity, we note thé, p) is inde-
pendent o in Lipkin's approximation (see Eq. (6.13) of Lipkin, 1973), and so it
can be taken out from under the integral sign. With that change, the “sin” terms in
Egs. (37), (38), and (40) contain the facid{x — y) which vanishes for space-like
intervals. The “cos” terms fall off as/Ix — y|? for largex —y for a mass-zero
particle (see Bjorken and Drell, 1965, p. 171), and the faste(p, p) — A21(p, p)
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should be small as it vanishes for equal numbers of right-handed and left-handed
photons.

The departure from local commutativity allows an interference between a
particle created at and one created gt but does not restrict the measurability of
#(x) or ¢t(x). Similarly, the small interference indicated by Egs. (38), (39), and
(40) should not significantly affect the measurability of the fields as long as we do
not attach physical meaning to the measurement of the field strength at a point,
but to averages over finite space-time regions (Bohr and Rosenfeld, 1950).

5. SPIN-STATISTICS THEOREM

In his 1940 paper, Pauli (1940) concludes: “For integral spin the quantization
accordingto the exclusion principle is not possible.” If we apply this to quasibosons,
which have integral spin, the theorem simply states that quasibosons cannot obey
fermi statistics.

However, one of the basic assumptions of the theorem, space-like commuta-
tivity, is also not satisfied by composite integral spin particles since they do not
obey Bose commutation relations. Therefore, this theorem does not apply to most
of the known integral spin particles (nuclei and molecules with an even number of
fermions).

Although the spin-statistics theorem does not apply to composite integral
spin particles, Ehrenfest’'s and Oppenheimer’s (Ehrenfest and Oppenheimer, 1931)
approximaterule does apply. It states that composite particles formed of an even
number of fermions obey Bose statistics while those formed of an odd number
of fermions obey Fermi statistics. If the spins of the fermions are collinear, the
predictions of this rule are the same as those of the spin-statistics theorem. This
rule is also supported by the second quantization formalism as an even number
of fermion creation operators commute and an odd number anticommute, and the
deviations caused by extra terms in the commutation relations are small for tightly
bound, well separated particles (Sahlin and Schwartz, 1965).

If integral spin “elementary particles” are formed of multiple fermions, the
theorem would also not apply to them. As Messiah and Greenberg (Messiah and
Greenberg, 1964) and Von Baeyer (Von Baeyer, 1964) noted long ago, experimental
tests are necessary to determine the symmetry of “elementary particles,” without
recourse to the spin-statistics theorem.

6. COMPARISON WITH EXPERIMENT

Here we look at the quasiboson theory for the photon and the corresponding
experimental results. But before that, we will briefly considef lded Cooper
pairs,knownquasibosons.
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6.1. Known Quasibosons

Even for the superfluid state of Fithe molecules are well separated (Huang,
1963) as the interatomic distances are 20-8 cm while the hard sphere radius is
1 x 108 cm. Treating Héas a boson is a good approximation as shown by many
observables, such as specific heat, ultrasound absorption, and neutron scattering.
The Bose—Einstein condensation is also in general agreement with this expecta-
tion. However, the Helium ground state potential shows a short-range hard-core
repulsion (Feltgert al,, 1982) which is believed to be caused by the Pauli principle.

Since the electron—electron distances for Cooper pairs in a superconductor
are about 10° cm and the pair size is about 10cm, one might expect that we
could not put many quasibosons in the same state. On the contrary, the Fermi
statistics of the components does not prevent us from putting large numbers of
fermion pairs into one quasiboson state. As the density of quasibosons increases,
the functionF (k) spreads in momentum space to allow more quasibosons in the
same state. In superconductors, a Bose—Einstein like condensation occurs with a
large number of pairs ending up in the lowest energy state. Experimental evidence
that the Cooper pairs are not bosons is shown by the energy gap. As Lipkin (1973)
noted, “The Pauli principle effect thus produces an energy gap in the excitation
spectrum. This effect is characteristic of overlapping fermion pairs, and would be
absent if the fermions behaved like simple bosons.”

6.2. Photon

The main evidence indicating that photons are bosons comes from the Black-
body radiation experiments which are in agreement with Planck’s distribution. We
will now calculate the photon distribution for Blackbody radiation by using the
second quantization method (Koltun and Eisenberg, 1988), but wjttasiboson
photon. The atoms in the walls of the cavity are taken to be a two-level system
with photons emitted from the upper leygéland absorbed at the lower lewel
The transition probability for emission of a photon whgnphotons are present
is enhanced,

Wep(p + 1 ) = (M + 1) (1= ) w1y < 0), (41)

where we have used the first equation of (23). The absorption is also enhanced,
but less since we use the second equation of (23)

np—1
Wge(Mp —1 <= Np) =nNp (1 - pT) Wpa (0 < 1p). (42)

Using the equality,
Wﬂa(O < 1p) = Waﬁ(lp < 0), (43)
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of the transition rates (Koltun and Eisenberg, 1988), Egs. (41) and (42) can be
combined to give

Wop(Np + 1< np)  (np +1)(1— 2)
W (Np — 1 < np) np(1— %) '

(44)

According to Boltzmann’s distribution law, the probability of finding the
system with energy E is proportional &0 5/XT. Thus, the equilibrium between
emission and absorption requires that

Weps(Np 4+ 1 < np) e B/KT = wy, (n, — 1 < np) e B/kT, (45)
with the photon energy, = Eg — E,. Combining (44) and (45) results in
np = 2 ,
U+ U+2)/Q+ Ju2(1+2/Q) + (u+ 22/ Q2
with u = o/ — 1. ForQ(wp/KT) > 1, this reduces to

1
Mo = er/KT(1+ é) -1

(46)

(47)

For large2 this approaches Planck’s distribution law. The measured quantity
in Blackbody radiation experiments is usually,, the spectral emittance as a
function of wavelength

~ 27h
)Ls(ehc/)LkT (1+ é) _ 1)'

The biggest deviations from Planck’s law will occur fahc/(AkT) < 1, and in
that case Eq. (46) must be used.

We can calculat&2(p, p) by using Eq. (21), but we need a value for the
momentum spreakl. From the uncertainty principle, the momentum spread must
be of ordeth/Ax whereAXx is the photon wavelength,

W, (48)

h
Using (49), Eq. (21) becomes
3\¥v
b0 = (o) 5 (50

To see the effect of the/X2(p, p) term, consider the Blackbody radiation ex-
periments of Coblentz (1916) at 1596 K in a cavity of volume 128 iorthe wave-
length range 1-6.mm. For these conditions, Eq. (47) applies and{p, p) <
107?, and the maximum deviation from Planck’s law is less than one partif, 10
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much too small to be detected. Comparison with other Blackbody radiation exper-
iments also showed that the¢ @(p, p) term is too small to be detected. Unfortu-
nately, we cannot recommend any practical experimental test of Eq. (48).

Another method of determining whether a particle is a quasiboson is by
observing the symmetry of two-particle states. As discussed in Section 3, the wave
functions of two identical elementary bosons must be symmetric under interchange
while the wave functions of two composite quasibosons can be antisymmetric if
the two quasibosons are not identical.

According to the theorem of Landau (1948) and Yang (1950), a vector particle
(with total angular momentura 1) cannot decay into two photons. This can be
seen as follows (Close, 1979): The two photons state must be described in terms
of three vectors: the relative momentlknand the two polarization vectoes
ande,. The state must be bilinear in the polarization vectors. There are just three
possibilities:

€1 X €2, (€1-€2)k, Kk x (e1 x €2). (51)

The last one has zero amplitude because of the transversality corditios: 0.

The first two are antisymmetric under an interchange of the two photons. Since two
identical bosons or two identical quasibosons are symmetric under interchange, a
vector particle cannot decay into two photons, completing the proof.

However, a vector particle can decay into two composite quasiboson photons,
if the photons are not identical as in Eq. (31). Many decays of vector particles into
two photons are forbidden by charge conjugation invariance. &ipbetons trans-
form as 1)", two photons will be even under charge conjugation. For example,
the 3S,, and!P; states of positronium hav@ = —1 and thus cannot decay into
two photons. ThéP; state of positronium ha€ = +1 and can decay into two
nonidentical photons, providing a test of this theory.

Most of the vector mesons cannot decay into two photons because of charge
conjugation invariance, but some axial vector mesons suéf(2285), f1(1420),
andxc1(1P) with JPC = 1** can. Detection of such decays can provide evidence
that the photon is a composite particle with nonidentical forms.

7. CONCLUSIONS

Itis our conjecture that all integral spin particles are quasibosons, composed
of fermions. This is based on the observation that most known integral-spin parti-
cles are quasibosons which behave so similar to bosons that it is difficult to detect
the non-Bose effects caused by the underlying fermions. The experimental results
regarding the photon, which is usually held up as the exemplar boson, are incon-
clusive. It was shown in Section 6.2 that the Blackbody radiation from quasiboson
photons is so similar to Planck’s distribution that the difference could not have
been detected in any existing experiment. It was shown in Sections 4 and 5 that the
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spin-statistics theorem does not apply to composite particles because their fields
are nonlocal.

Inthis paper, we have only considered the photon for itis usually considered to
be the model boson. Tests to determine whether two photons are always symmetric
under interchange were discussed in Section 6.2.

Although the commutation relations, Egs. (3) and (9), are more complex than
those for bosons, it is really a simpler picture of matter in that there exists only
fermions and composite particles formed of fermions. The old approximation is
stillvalid: If acomposite particle is formed of an odd number of fermions, use Fermi
statistics, and if a composite particle is formed of an even number of fermions, use
Bose statistics. Of course, in some cases, such as Cooper pairs, this is not a good
approximation.
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